Efficiency Matrix Pty Ltd

Efficiency Matrix - Halogen Downlight Mitt - R Value Testing

Halogen Light Mitt - Thermal Efficiency Analysis

Report No. 30B-09-0338-TRP-445314-0

Vipac Engineers & Scientists Ltd

Melbourne VIC

11 Nov 2009

DOCUMENT CONTROL

Efficiency Matrix - Halogen Downlight Mitt - R Value Testing				
Halogen Light Mitt - Thermal Efficiency Analysis				
REPORT NO:		LIBRAF	RY CODE:	
30B-09-0338-TRP-445314-0 PREPARED FOR:		PREPAI	RED BY:	
Efficiency Matrix Pty Ltd		Vipac En	gineers & Scientists Ltd	
14 Ondine Drive		Private Ba	ag 16	
Wheelers Hill Vic 3150		Port Melb AUSTRA	oourne VIC 3207 LIA	
Contact: John Konstanta	akopoulos	Email:	melbourne@vipac.com.au	
Phone: 0434 195 792		Phone:	61 3 9647 9700	
Fax :		Fax :	61 3 9646 4370	
AUTHOR: Jiena Mccune				
	Fiona McC	lure	Date: 11/11/09	
	Project Engineer			
	0			
REVIEWED BY:	Tat			
	Cray			
	David Ferra	ari	Date: 11/11/09	
APPROVED BY:				
			Date:	
REVISION HISTORY:				
Revision No.	D	ate Issued	Reason/Comments	
00	11	1 Nov 2009	Initial Issue	
DISTRIBUTION:				
Copy No.	R	evision No.	Location	
1		01	Efficiency Matrix Pty	
2		01	Ltd (pdf)	
2		01	Project File (hardcopy)	
2		01	job mulliber (pur)	
KEYWORDS:	ASTM C	177, therma	conductivity, thermal	
	resistanc	e, BCA, R-va	alue.	

NOTE: This is a controlled document within the document control system. If revised, it must be marked SUPERSEDED and returned to the Vipac QA Representative.

Page 3 of 9

EXECUTIVE SUMMARY

This document contains commercial, conceptual and engineering information which is proprietary to VIPAC Engineers & Scientists Ltd. We specifically state that inclusion of this information does not grant the Client any license to use the information without VIPAC's written permission. We further require that the information not be divulged to a third party without our written consent.

Vipac Engineers & Scientists Ltd (VIPAC) has been commissioned by Efficiency Matrix Pty Ltd to determine the material R-value and Total R-Value of their Halogen Light Mitt product.

In order to determine the thermal conductivity of the Halogen Light Mitt, Vipac outsourced AS 4569 testing on the Halogen Light Mitt under ambient temperature conditions. This resulted in a thermal conductivity value of $\mathbf{k} = 0.035 \pm 0.003 \text{ mK/W}$ [1].

As stipulated by the BCA, the material R-value for the Halogen Light Mitt was calculated, in accordance with AS 4859.1:2002, to be $R_m = 0.514 \text{ m}^2\text{K/W}$, which projected onto the circular area covered by the base of the cone results in an equivalent material R-value of $\mathbf{R}_m = 0.238 \text{ m}^2 \text{ K/W}$.

Combining the Halogen Light Mitt with a plasterboard ceiling, for the circular area covered by the base of the cone, and appropriate air film and air space thermal resistances, a Total System R-value of 0.62 m²K/W for Heat flow out, and a Total R-value of 0.66 m²K/W for Heat flow in were obtained via calculations in accordance with AS4859.1:2002.

TABLE OF CONTENTS

1.	INTRODUCTION	5
2.	SCOPE OF WORK	5
3.	ASSESSMENT	5
4.	CONCLUSIONS	9
5.	BIBLIOGRAPHY	9

1. INTRODUCTION

Vipac Engineers & Scientists Ltd (VIPAC) has been commissioned by Efficiency Matrix Pty Ltd to determine the material R-value and Total R-Value of their Halogen Light Mitt product.

2. SCOPE OF WORK

In order to determine the material R-value and Total R-Value of the Efficiency Matrix Halogen Light Mitt product, Vipac conducted the following tasks:

- Outsourced AS 4569 testing on the Halogen Light Mitt material under ambient temperature conditions in order to obtain the thermal conductivity of the material;
- Calculated an approximation of the R-value of a material with the equivalent surface area of the horizontal projection of the Halogen Light Mitt and the same conductive heat transfer;
- Combined this material R-value with the thermal resistances of a typical plasterboard ceiling, the air space in between them, and the boundary air films, in order to determine a Total R-value for the system.

3. ASSESSMENT

AS 4569 testing was carried out by Curtin University of Technology, Division of Science and Engineering, and resulted in a thermal conductivity value of $k = 0.035 \pm 0.003$ W/mK for a flat sample of the Halogen Light Mitt material, at a mean temperature of 22.6 ± 0.1 °C [1].

Customer supplied data defined the geometry of the Halogen Light Mitt, as shown in Figure 3.1

Base: 230mm outer diameter Height: 220mm Thickness: 22mm at base, 10mm near tip

Figure 3.1: Halogen Light Mitt

The material R-value for the Halogen Light Mitt was then determined, based on an areaweighted average thickness of 18mm, to be $R_m = 0.514 \text{ m}^2\text{K/W}$. Projecting this thermal resistance from the conical surface area (0.0897 m²) onto the circular area covered by the base of the cone (0.0416 m²) results in an equivalent material R-value of $R_m = 0.238 \text{ m}^2 \text{ K/W}$.

	Report No. 30B-09-0338-TRP-445314-0	
	Efficiency Matrix Pty Ltd	
	Halogen Light Mitt - Thermal Efficiency Analysis	Page 6 of 9

For the purposes of calculating the Total R-Value, it is assumed that the Halogen Light Mitt will typically be used in conjunction with a plasterboard ceiling of 10mm thickness (R = 0.059 m²K/W) as stipulated by the default ceiling construction AS/NZS 4859.1:2002, and shown in Figure 3.2.

Figure 3.2: Insulated ceiling system

The thermal resistance of the air films above and below the combined system are dependent on the direction of heat flow. AS/NZS 4859.1:2002 requires the following temperatures, temperature differences and mean temperatures to be used in determining total thermal resistances:

- Heat flow out: Indoors 18°C, outdoors 12°C (6 K difference), mean 15 °C.
- Heat flow in: Indoors 24°C, outdoors 36°C (12 K difference), mean 30 °C.

In the absence of other documented values, and given the likely collection of dust on the upper surface of the thermal mitt, it is assumed that both the plasterboard ceiling and the thermal mitt are high emittance surfaces, with $\varepsilon = 0.9$,.

The resulting air film resistances are therefore as shown in Table 3.1.

Surface	Direction of heat flow	Resistance
Lower face of plasterboard ceiling.	Up	0.11 m ² K/W
	Down	0.16 m ² K/W
Upper face of thermal mitt (62.4° slope, from	Up	0.11 m ² K/W
horizontal)	Down	0.125 m ² K/W
Upper face of thermal mitt (62.4° slope, from	Up	0.051 m ² K/W
norizontal), projected onto circular area at base of cone.	Down	0.058 m ² K/W

Table 3.1: Air Film Thermal Resistances

The thermal resistance of the enclosed air space was then determined by:

- Assuming the temperature of the air above the thermal mitt (the attic temperature) is at the Outdoor temperatures stated above, and the temperature of the air below the ceiling is at the Indoor temperatures stated above.
- Combining the thermal resistances for each system component into a thermal circuit.
- Using natural convection correlations and radiation laws to determine the thermal resistance provided by the air space, based on iteratively obtained surface temperatures for the upper surface of the plasterboard and the lower surface of the thermal mitt.
- Assuming that the surfaces of the plasterboard and thermal mitt are isothermal, and neglecting thermal bridging at their area of contact.
- Neglecting the effect of any air gaps in the plasterboard or thermal mitt.

Using the above method, the following air space thermal resistances, temperature profiles and Total R-values were obtained, and are included in Table 3.2 and Table 3.3.

	Direction of heat flow	Resistance
Air Space Thermal Resistance	Up	0.166 m ² K/W
	Down	0.158 m ² K/W
Total R-Value	Up	0.624 m ² K/W
	Down	0.673 m ² K/W

Table 3.2: Air Space and Total Thermal Resistances

Location	Temperature during heat flow out (Up)	Temperature during heat flow in (Down)
Inside Air	18°C	24 °C
Lower Surface of Plasterboard	16.94°C	25.43 °C
Upper Surface of Plasterboard	16.37°C	25.95 °C
Air between Plasterboard and Thermal Mitt	15.35 °C	26.93 °C
Lower Surface of Thermal Mitt	14.78°C	27.36 °C
Upper Surface of Thermal Mitt	12.49°C	29.48 °C
Attic Air Temperature	12 °C	30 °C

Table 3.3: Temperature Profiles

ViPAC	Report No. 30B-09-0338-TRP-445314-0	
	Efficiency Matrix Pty Ltd	
•	Halogen Light Mitt - Thermal Efficiency Analysis	Page 8 of 9

The calculated values for the thermal resistance of the air space compare reasonably to those provided in the AIRAH Technical Handbook [2].

The thermal resistance of the enclosed air space can be very sensitive to temperature and temperature difference. It is therefore determined not only at the temperatures stated above, but also, for standard temperature differences of 12K and 18K, as stipulated in AS/NZS 4859.1:2002. These were achieved by increasing the attic temperature from 36°C to 42°C and 48°C respectively. Note that these are not necessarily representative of the air space temperature when Halogen lights are in operation, which is expected to be significantly higher due to heat loss from the light.

The air space thermal resistances, temperature profiles and Total R-values were obtained for the above-mentioned temperature differences, as shown in Table 3.4 and Table 3.5.

	Temperature Difference	Resistance
Air Space Thermal Resistance	12 K	0.151 m ² K/W
	18 K	0.146 m ² K/W
Total R-Value	12 K	0.666 m ² K/W
	18 K	0.661 m ² K/W

Table 3.4:	Effect of	Temperature	Difference on	Thermal	Resistance
------------	-----------	-------------	----------------------	---------	------------

Location	Temperature difference of 12 K	Temperature difference of 18 K
Inside Air	24°C	24 °C
Lower Surface of Plasterboard	26.88 °C	28.36 °C
Upper Surface of Plasterboard	27.94 °C	29.96 °C
Air between Plasterboard and Thermal Mitt	29.84 °C	32.75 °C
Lower Surface of Thermal Mitt	30.67 °C	33.93 °C
Upper Surface of Thermal Mitt	34.96 °C	40.42 °C
Attic Air Temperature	36 °C	42 °C

Table 3.5: Temperature Profiles for Additional Temperature Differences

The slight decrease in air space resistance as a function of temperature difference is to be expected, given that radiation is dominant for this air space. It is expected that, in practice attic

temperatures may be higher that 30°C, and therefore that a Total R-value of 0.66 m^2 K/W is more appropriate.

4. CONCLUSIONS

The material R-value for the Halogen Light Mitt was determined to be $R_m = 0.514 \text{ m}^2\text{K/W}$, which, projected onto the circular area covered by the base of the cone, results in an equivalent material R-value of $R_m = 0.238 \text{ m}^2 \text{ K/W}$.

Combining the Halogen Light Mitt with a plasterboard ceiling, for the circular area covered by the base of the cone, and appropriate air film and air space thermal resistances, a Total R-value of 0.62 m^2 K/W for Heat flow out, and a Total R-value of 0.66 m^2 K/W for Heat flow in were obtained.

5. **BIBLIOGRAPHY**

- [1] Test Report, Curtin University of Technology, Division of Science and Engineering.
- [2] AIRAH Technical Handbook, Edition 4, 2007

×