Efficiency Matrix – Halogen Light Mitt 2x2m System

Calculation of System R-Value and Energy Loss

Report No. 30B-10-0033-TRP-453519-0

Vipac Engineers & Scientists Ltd

Melbourne VIC

13 Apr 2010

DOCUMENT CONTROL

	Efficienc	y Matrix –	
	Calculation of System F	R-Value and	Energy Loss
REPORT	'NO:	LIBRAF	RY CODE:
30B-10-0033	-TRP-453519-0		
PREPAR	ED FOR:	PREPAI	RED BY:
Efficiency	Matrix Pty Ltd	Vipac Eng	gineers & Scientists Ltd
14 Ondine	Drive	Private Ba	ag 16
Wheelers H	Hill Vic 3150	Port Melb	ourne VIC 3207
		AUSTRA	LIA
Contact:	John Konstantakopoulos	Email:	melbourne@vipac.com.au
Phone:	0434 195 792	Phone:	61 3 9647 9700
Fax :		Fax :	61 3 9646 4370
AUTHOR			
no mor.			
	Dr. Fiona N	Date: 13 Apr 2010	
	Senior Con	sultant	
REVIEWE	D BY:		
	Ian Jones		Date: 13 Apr 2010
	Director		-

	Director	
REVISION HISTORY:		
Revision No.	Date Issued	Reason/Comments
00	13 Apr 2010	Initial Issue
DISTRIBUTION:		
Copy No	Revision	Location
1	00	Efficiency Matrix
2	00	Vipac
KEYWORDS .		

NOTE: This is a controlled document within the document control system. If revised, it must be marked SUPERSEDED and returned to the Vipac QA Representative.

Delivered reports shall only be reproduced verbatim and in full by the Client, excepting with the prior written consent of VIPAC. Reproduction shall also include submitting to the inspection of the third parties.

EXECUTIVE SUMMARY

This document contains commercial, conceptual and engineering information which is proprietary to VIPAC Engineers & Scientists Ltd. We specifically state that inclusion of this information does not grant the Client any license to use the information without VIPAC's written permission. We further require that the information not be divulged to a third party without our written consent.

Vipac Engineers & Scientists Ltd (VIPAC) has been commissioned by Efficiency Matrix Pty Ltd to calculate the system R-value, in accordance with AS/NZS 4859.1:2002, for a 2m x 2m cross-section of a standard room with one gimble down light exposed following the standards of AS/NZS 3000:2007 with 200mm clearance, and the Halogen Mitt installed with standard R3.5 insulation cut to the footprint (cylindrical hole) of the Halogen Mitt. These calculations are not experimental tests, but rather engineering calculations based on AS/NZS 4859.1:2002, typical heat transfer equations, and the measured thermal conductivity of the material from which the thermal mitt is made.

All of the calculations were carried out for the passive situation, where the light is turned off and therefore does not provide a source of energy flow or an elevated surface temperature.

The difference in heating/cooling loss will then be determined for each season (Summer, Autumn, Winter and Spring) based on typical weather and housing conditions (as defined by AIRAH handbook, standard weather data, BCA and/or AS/NZS 4859.1:2002), as well as an additional calculation for an elevated attic temperature.

The resulting System-R value for a $2m \times 2m$ cross-section of a standard room with one gimble down light and a Halogen Light Mitt is 3.8 m²K/W for upwards energy flow (heating/winter) and 3.9 m²K/W for downwards energy flow (cooling/summer), as compared with 2.8 and 3.1 m²K/W respectively for a $2m \times 2m$ cross-section of a standard room with one gimble down light, without the Halogen Light Mitt. This results in a range of energy savings depending on the indoor and temperature conditions. For average winter conditions, the energy saving is 1.7 kWh/month while for average summer conditions, the energy saving is 1.1 kWh/month.

When raised attic temperatures occur, the Halogen Light Mitt can provide significant thermal protection, and is predicted to reduce an attic air temperature of 71°C, to an air temperature within the halogen light mitt of about 48°C (when the light is turned off).

TABLE OF CONTENTS

1.	INT	RODUCTION
2.	SCO	DPE OF WORK
3.	ASS	SESSMENT5
	3.1.	HALOGEN LIGHT MITT SYSTEM5
	3.2.	STANDARD DOWN LIGHT SYSTEM7
	3.3.	TEMPERATURE CONDITIONS
	3.4.	AIR FILM AND AIR SPACE RESISTANCES
4.	RE	SULTS12
5.	RE	FERENCES14
A	1 :	CLIMATE STATISTICS FOR MELBOURNE

Page 5 of 16

1. INTRODUCTION

Vipac Engineers & Scientists Ltd (VIPAC) has been commissioned by Efficiency Matrix Pty Ltd to calculate the system R-value for a 2m x 2m cross-section of a standard room with one gimble down light exposed with 200mm clearance, and the Halogen Light Mitt installed with standard R3.5 insulation cut to the footprint (cylindrical hole) of the Halogen Mitt. The difference in heating/cooling loss will then be determined for a range of temperature conditions.

2. SCOPE OF WORK

To calculate the system R-value, in accordance with AS/NZS 4859.1:2002 [3], for a 2m x 2m cross-section of a standard room with one gimble down light exposed following the standards of AS/NZS 3000:2007 [4] with 200mm clearance, and the Halogen Light Mitt installed with standard R3.5 insulation cut to the footprint (cylindrical hole) of the Halogen Mitt as shown in Figure 3.2.

The difference in heating/cooling loss will then be determined for each season (Summer, Autumn, Winter and Spring) based on typical weather and housing conditions (as defined by AIRAH handbook [5], standard weather data, BCA and/or AS/NZS 4859.1:2002 [3]), as well as an additional calculation for an elevated attic temperature.

3. ASSESSMENT

3.1. HALOGEN LIGHT MITT SYSTEM

Customer supplied data defined the geometry of the Halogen Light Mitt, as shown in Figure 3.1.

Figure 3.1: Halogen Light Mitt

The thermal conductivity of the Halogen Light Mitt material is $k = 0.035 \pm 0.003$ mK/W [1]. The material R-value for the Halogen Light Mitt was previously calculated, in accordance with

AS 4859.1:2002 [3], to be $R_m = 0.514 \text{ m}^2\text{K/W}$ based on an area of 0.0897 m², which projected onto the circular area covered by the base of the cone results in an equivalent material R-value of $R_{m, eq} = 0.238 \text{ m}^2 \text{ K/W}$ based on an area of 0.0416m² [2].

For the purpose of calculating the system R-Value of the Halogen Light Mitt System, it is assumed that:

- the Halogen Light Mitt will typically be used in conjunction with a plasterboard ceiling of 10mm thickness (R = 0.059 m²K/W) as stipulated by the default ceiling construction AS/NZS 4859.1:2002 [3], and shown in Figure 3.2, and that the variation in the ceiling R-Value due to the presence of the gimble down light is negligible;
- the gimble down light is turned off (no energy source or elevated temperature);
- standard R3.5 insulation is placed around the Halogen Light Mitt, with a cylindrical hole cut to achieve a close fit around the Halogen Light Mitt, as shown in Figure 3.2;
- the Halogen Light Mitt and gimble down light are located in the centre of a 2m x 2m crosssection, as shown in Figure 3.3;
- the roof is a pitched tiled roof, as outlined in AS/NZS 4859.1:2002 K8 Default Construction Types [3], with a pitch of 22.5° and an R-value of 0.023 m²K/W;
- the attic space is assumed to be non-vented [3]; and
- the thermal resistance of the air film on the outdoor surface is assumed to be $0.04 \text{ m}^2\text{K/W}$.

Figure 3.2: Side View of Halogen Light Mitt System

Figure 3.3: Plan View of Halogen Light Mitt System

3.2. STANDARD DOWN LIGHT SYSTEM

For the purpose of calculating the system R-Value for the Standard Down Light System, it is assumed that:

- a standard down light will typically be used in conjunction with a plasterboard ceiling of 10mm thickness ($R = 0.059 \text{ m}^2 \text{K/W}$) as stipulated by the default ceiling construction AS/NZS 4859.1:2002 [3], and shown in Figure 3.4, and that the variation in the ceiling R-Value due to the presence of the gimble down light is negligible;
- the gimble down light is turned off (no energy source or elevated temperature);
- standard R3.5 insulation is placed around the gimble down light following the standards of AS/NZS 3000:2007 [4] with 200mm clearance, as shown in Figure 3.4;
- the gimble down light is located in the centre of a 2m x 2m cross-section, as shown in Figure 3.5;
- the roof is a pitched tiled roof, as outlined in AS/NZS 4859.1:2002 K8 Default Construction Types [3], with a pitch of 22.5° and an R-value of 0.023 m²K/W;
- the attic space is assumed to be non-vented [3]; and

• the thermal resistance of the air film on the outdoor surface is assumed to be $0.04 \text{ m}^2\text{K/W}$.

Figure 3.4: Side View of Standard Down Light System

Figure 3.5: Plan View of Halogen Light Mitt System

3.3. TEMPERATURE CONDITIONS

The thermal resistance of the air films above and below the combined system are dependent on the direction of energy flow. AS/NZS 4859.1:2002 [3] requires the following temperatures, temperature differences and mean temperatures to be used in determining total thermal resistances:

- Heat flow out: Indoors 18°C, outdoors 12°C (6 K difference), mean 15 °C.
- Heat flow in: Indoors 24°C, outdoors 36°C (12 K difference), mean 30 °C.

In order to demonstrate the full range of energy flows through the ceiling, additional indoor and outdoor temperatures have been added to this analysis. These additional temperatures are based on the AIRAH Handbook [5], which specifies the summer and winter temperatures for comfort assessment to be 34.3 and 3.5 respectively, and Climate statistics for Melbourne, obtained from the Bureau of Meteorology [6] and included in Appendix A1.

An additional temperature condition, simulating high attic temperatures, was also calculated. A raised attic temperature of 71°C was achieved by setting the outdoor air temperature to 85°C, in order to simulate high solar radiation loads on the roof, and a resulting increase in roof temperature and attic temperature.

Condition	Indoor Temperature (°C)	Outdoor Temperature (°C)				
1. Extreme Winter	18	-2.0				
2. Cold Winter	18	3.5				
3. Average Winter	18	12				
4. Spring/Autumn	20	15				
5. Average Summer	20	26				
6. Warm Summer	24	36				
7. Extreme Summer	24	45				
8. Raised Attic Temperature	24	Attic Temperature = 71°C				

The full set of indoor and outdoor temperatures calculated are shown in Table 3.1.

Table 3.1: Indoor and Outdoor Temperature Conditions

3.4. AIR FILM AND AIR SPACE RESISTANCES

In the absence of other documented values, and given the likely collection of dust on the indoor surfaces, it is assumed that all surfaces are high emittance surfaces, with $\varepsilon = 0.9$.

The air film resistances are therefore determined as per AS/NZS 4859.1:2002 [3], and the resulting values are shown in Table 3.2.

Surface	Direction of heat flow	Air Film Resistance	Equivalent Resistance, based on Projected Horizontal Area.
Horizontal indoor surfaces,	Up	$0.11 \text{ m}^2\text{K/W}$	$0.11 \text{ m}^2 \text{K/W}$
(plasterboard, R3.5 insulation).	Down	$0.16 \text{ m}^2\text{K/W}$	$0.16 \text{ m}^2 \text{K/W}$
22.5° slope outdoor surfaces,	-	0.04 m ² K/W	0.037 m ² K/W
(outer surface of roof).			

Table 3.2: Air Film Thermal Resistances

The attic thermal resistance, for a non-ventilated attic space, and high emittance surfaces is provided in AS/NZS 4859.1:2002 [3], and included in Table 3.3. These values are used for the attic space above the R3.5 insulation, and above the un-insulated down light. The thermal resistance of the attic space above the halogen light mitt, however, was calculated as described below, due to the significant increase in surface area, and change in surface orientation, with the presence of the halogen light mitt.

Roof Space Type	Direction of heat flow	Resistance
Non-ventilated	Up (winter) Down (summer)	0.18 m ² K/W 0.28 m ² K/W

 Table 3.3: Attic Space Thermal Resistances

The thermal resistance of the enclosed air spaces between the plasterboard ceiling and the Halogen Light Mitt, and the Halogen Light Mitt and the roof, were then determined by:

- Assuming the temperature of the air above the roof is at the Outdoor temperatures stated above, and the temperature of the air below the ceiling is at the Indoor temperatures stated above.
- Combining the thermal resistances for each system component into a thermal circuit.

- Using natural convection correlations and radiation laws to determine the thermal resistance provided by the air space enclosed between the plasterboard ceiling and the Halogen Light Mitt, and the Halogen Light Mitt and the roof, based on iteratively obtained surface temperatures for the upper surface of the plasterboard, the lower surface of the thermal mitt, the upper surface of the thermal mitt and the lower surface of the roof.
- Assuming that the surfaces are isothermal, and neglecting thermal bridging at their area of contact.
- Neglecting the effect of any air gaps in the plasterboard, gimble downlight, thermal mitt or roof.

The thermal resistance of the enclosed air spaces between the plasterboard ceiling and the Halogen Light Mitt, and the Halogen Light Mitt and the roof, are sensitive to temperature, and therefore must be calculated separately for each temperature condition.

Report No. 30B-10-0033-TRP-453519-0	
Efficiency Matrix Pty Ltd	
Calculation of System R-Value and Energy Loss	Page 12 of 16

4. **RESULTS**

The System R-values, R, and corresponding rates of energy loss, Q, for both the Halogen Light Mitt System, and the Standard Down Light System, for each temperature condition, are summarised in Table 4.1: System R-Values and Rates of Energy Loss.

Condition Extreme Winter Cold Winter Average Winter Spring/Autumn Average Summer Warm Summer Extreme Summer 	Indoor Temp.	Outdoor Temp.	Halogen I 2x2m S	Light Mitt System	Standard Down Light 2x2m System			
	(°C)	(°C)	R (m ² K/W)	Q (W)	Standard Do 2x2m Sy R (m²K/W) 2.8 2.8 2.8 3.1 3.1 3.1 3.1 3.1 3.1	Q (W)		
1. Extreme Winter	18	-2.0	3.8	21.3	2.8	28.8		
2. Cold Winter	18	3.5	3.8	15.4	2.8	20.9		
3. Average Winter	18	12	3.8	6.4	2.8	8.6		
4. Spring/Autumn	20	15	3.8	5.3	2.8	7.2		
5. Average Summer	20	26	3.9	6.1	3.1	7.7		
6. Warm Summer	24	36	3.9	12.3	3.1	15.3		
7. Extreme Summer	24	45	3.9	21.5	3.1	26.8		
8. Raised Attic Temperature	24	Tattic = 71°C	3.9	62.7	3.1	78.0		

Table 4.1: System R-Values and Rates of Energy Loss

The resulting energy savings provided by the use of the Halogen Light Mitt, based on a 2x2m system, are presented in Table 4.2: Energy Savings with the Halogen Light Mitt.

Condition	Indoor Temp.	Outdoor Temp.	Energy Savings with Halogen Light Mitt, based on a 2x2m System							
	(°C)	(*C)	Change in Energy Loss, ΔQ (W)	Energy Savings per Day (kWh/day)	Energy Savings per month (kWh/month)					
1. Extreme Winter	18	-2.0	7.5	0.18	5.5					
2. Cold Winter	18	3.5	5.5	0.13	4.0					
3. Average Winter	18	12	2.3	0.054	1.7					
4. Spring/Autumn	20	15	1.9	0.045	1.4					
5. Average Summer	20	26	1.5	0.037	1.1					
6. Warm Summer	24	36	3.1	0.073	2.2					
7. Extreme Summer	24	45	5.3	0.13	3.9					
8. Raised Attic Temperature	24	Tattic = 71°C	15.2	0.36	11					

Table 4.2: Energy Savings with the Halogen Light Mitt

For temperature condition 8, with the raised attic temperature, the Halogen Light Mitt provides thermal protection from the high attic temperatures, reducing the air temperature around the down light from an attic air temperature of 71°C, to an air temperature within the halogen light mitt of about 48°C (with the light turned off).

5. **REFERENCES**

- 1. Test Report, Curtin University of Technology, Division of Science and Engineering.
- 2. Halogen Light Mitt Thermal Efficiency Analysis, Report No. 30B-09-0338-TRP-445314-0, Vipac Engineers and Scientists, 11/11/2009.
- 3. AS/NZS 4859.1:2002 Materials for the thermal insulation of buildings. Part 1: General criteria and technical provisions, Standards Australia/Standards New Zealand.
- 4. AS/NZS 3000:2007 Electrical installations (known as the Australian/New Zealand Wiring Rules), Standards Australia/Standards New Zealand.
- 5. AIRAH Technical Handbook, Edition 4, 2007
- 6. Bureau of Meteorology, Climate Statistics for Melbourne. Obtained from <u>http://www.bom.gov.au/climate/averages/tables/cw_086282_All.shtml</u> on 1/4/2010, and included in Appendix 1.

Report No. 30B-10-0033-TRP-453519-0	
Efficiency Matrix Pty Ltd	
Calculation of System R-Value and Energy Loss	Page 15 of 16

A1 : CLIMATE STATISTICS FOR MELBOURNE

Climate statistics for Australian locations

Page 1 of 2

Australian Governm	ent														
Bureau of Meteorolog								G	ilobal Aus	tralia NS	SEARCH W Vic. G	lid WA S	A Tas. A	CT N	√T į Ant
11		Wea	ther & War	nings Wa	iter Clima	te Numer	ical Predi	ction Abc	out Service	s Learn A	About Mete	orology F	legistered	User S	services
Inflate statistics for A	Austran	an ioc	auons												
li years of record															
Site name: MELBOURNE AIRPOI	रा		Site n	umber: 08	36282	Commer	nced: 197	'0							
atitude: 37.67°S Lon	gitude: 14	4.83°E	Eleva	tion: 113	m	Operatio	nal statu	s: Open		ivia	ab				
🗰 📲 View: 🦳 Main si	tatistics 🧯) All availa	ble	Q	Period:	Use all y	ears of da	ita 🏢		Q \	् Text	size: 🍥 î	vormal ()	Large	<i>,</i>
tatistics emperature Maximum temperature	Jan	Feb	Mar	Арг	May	Jan	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Ye	ars
Mean maximum temperature (°C)	26.3	26.5	24.0	20.2	16.6	13.6	13.0	14.4	16.6	19.2	21.9	24.4	19.7	40	197
lighest temperature (°C)	44.6	46.8	40.8	34,5	27.0	21.8	22.7	25.6	30.2	36.0	39.6	43.8	46.8	40	197
)ate	25 Jan	07 Feb	08 Mar	10 Apr	07 May	08 Jun	30 Jul	29 Aug	12 Sep	12 Oct	24 Nov	31 Dec	07 Feb		2.01
owest maximum temperature (°C)	13.9	13.5	12.7	11.7	8.0	6.2	5.7	6.5	8.2	10.4	11.6	13.0	5.7	40	197
Jate	05 Jan	02 Feb	29 Mar	07 Apr	31 May	19 Jun	03 Jul	16 Aug	05 Sep	16 Oct	15 Nov	04 Dec	03 Jul		201
Decile 1 maximum temperature (*C)	1931	19.8	18/3	15.4	13.3	1373	10.5	11.5	1350	14.3	15.9	18.1	1304	40	197
ecile 9 maximum temperature(°C)	35.6	34.8	31.6	26.1	20.8	16.3	15.5	17.8	21.1	25.3	29.6	32.7		40	197
fean number of days ≥ 30 °C	8.1	8.5	4.9	0.3	0.0	0.0	0.0	0.0	0.0	0.9	2.7	6.1	31.5	40	197
tean number of days ≥ 35 °C	3.7	27	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.6	1.8	9,7	40	197
tean number of davs ≥ 40 ℃	0.6	0.3	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	12	40	201
Minimum temperature															201
lean minimum temperature (°C)	13.6	\$4.1	12.6	10.1	8.3	6.2	5.3	5.9	7.0	8.4	10.3	12.0	9.5	40	197 201
owest temperature (°C)	6.0	4.8	3.7	1.2	0.6	-0.9	-2.5	-2.5	-1.1	1.3	0.9	4.1	-2.5	40	197 201
ale	27 Jan 1980	10 Feb 1980	26 Mar 2005	30 Apr 2009	19 May 1981	15 Jun 1972	21 Jul 1982	11 Aug 1986	20 Sep 1970	22 Oct 2006	04 Nov 1980	15 Dec 1986	11 Aug 1986		
ighest minimum temperature ($^{ m C}$)	30.5	26.9	24.3	21.7	16.5	14.1	12.7	13.3	18.5	21.8	23.6	26.3	30.5	40	197 201
ate	29 Jan 2009	20 Feb 1997	18 Mar 2008	03 Apr 2009	02 May 1997	09 Jun 1995	28 Jul 1975	31 Aug 2007	24 Sep 2001	18 Oct 1977	02 Nov 1987	12 Dec 1998	29 Jan 2009		
ecile 1 minimum temperature (°C)	9.5	10.0	8.6	6.2	4.5	2.5	2.0	2.8	3.4	4.4	6.3	8.1		40	197 201
ecile 9 minimum temperature (°C)	17.9	18.5	16.8	14.2	12.0	9,4	8.3	9.0	11.0	12.8	14.9	16.3		40	197 201
fean number of days ≤ 2 ℃	0.0	0.0	0.0	0.1	0.2	2.2	3.2	1.9	1.1	0.3	0.1	0.0	9.1	40	197 201
fean number of days ≤ 0 ℃	0.0	0.0	0.0	0.0	0.0	0.3	0.6	0.2	0.1	0.0	0.0	0.0	1.2	40	197 201
Ground surface temperature fean daily ground minimum	12.5	10.0	11.0	0.4	6.4	5.0	4.1	4.6	5.5	6.6	0.5	10.6	9.1	••	199
emperature (°C)	12.0	10.2	0.0	0.4	0.4	0.0	4.1	4.0	0.0	0.0	9.0	10.0	0.1		201
owesi grouno temperatore (C)	03 Jan	13 Feb	26 Mar	-0.4 30 Apr	30 May	-2.2 25 Jun	21 Jul	-2.2 10 Aug	05 Sep	16 Oct	02 Nov	03 Dec	-2.0 05 Sep		201
fean number of days ground min.	2009	2009	2005	2009	2006	2005	2006	2003	2007	2006	1999	2004	2007		199
emp. ≤ -1 ℃	0.0	0.0	0.0	0.0	0.0	u./	1.0	1.0	0.0	0.2	0.0	00	3.5		201
tatistics ainfall	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Ye	/ars
fean rainfail (mm)	41.2	42.2	37.3	44.5	40.2	37.5	36.0	46.4	46.3	53.1	61.1	48.4	533.9	40	197 201
lighest rainfall (mm)	101.6	200.6	142.2	141.6	155.5	105.4	94.4	97.1	127.0	143.8	158.0	139.0	820.8	40	197 201
ate	1991	2005	2001	1977	1974	1991	1987	1975	1993	1975	1988	1999	1978		
owest rainfall (mm)	1.6	1.0	4.4	4.8	8.0	10.4	7.0	16.4	8.2	5.6	18.2	1.6	310.2	40	197 201
late	2009	1991	1998	1981	2005	2006	1994	1987	2007	2007	2002	1972	1997		
ecile 1 rainfall (mm)	13.9	6.4	12.8	13.9	11.8	13.1	12.1	22.3	21.3	20.0	25.3	11.8	384.4	40	197 201
ecile 5 (median) rainfall (mm)	40.0	25.6	34.2	39.6	38.8	34.8	35.5	42.1	40.2	48.9	52.8	44.5	554.6	40	197 201
ecile 9 rainfall (mm)	71.7	99.4	63.7	83.8	65.0	56.4	60.8	69.6	77.0	92.0	113.4	86.7	659.8	40	197 201
ighest daily rainfall (mm)	50.6	138.8	98.2	132.4	52.4	28.2	44.6	37.0	38.0	70.8	80.8	76.4	138.8	40	197 201
ate	06 Jan 1995	03 Feb 2005	23 Mar 2001	08 Apr 1977	16 May 1974	08 Jun 1991	30 Jul 1987	07 Aug 1978	15 Sep 1993	16 Oct 1983	19 Nov 1978	27 Dec 1999	03 Feb 2005		
tean number of days of rain	8.5	6.9	8.9	10.1	12.4	13.5	14.1	15.5	14.2	13.5	11.6	9,4	138.6	40	19 20
lean number of days of rain $\ge 1 \text{ mm}$	5.2	4.5	5.7	6.3	7.4	8.2	8.1	10.0	9.2	8.8	7.8	6.0	87.2	40	19 20
	0.2														
fean number of days of rain \ge 10 mm	1.3	1.1	1.0	1.1	0.8	0.7	0.5	0.9	1.0	1.4	1.7	1.5	13.0	40	197 201
fean number of days of rain ≥ 10 mm fean number of days of rain ≥ 25 mm	0.2 1.3 0.3	1.1 0.3	1.0 0.3	1.1 0.3	0.8 0.1	0.7 0.1	0.5 0.1	0.9 0.1	1.0 0.1	1.4 0.2	1.7 0.3	1.5 0.3	13.0 2.5	40 40	197 201 197 201
Mean number of days of rain ≥ 10 mm Mean number of days of rain ≥ 25 mm tatistics	0.2 1.3 0.3 Jan	1.1 0.3 Feb	1.0 0.3 Mar	1.1 0.3 Apr	0.8 0.1 May	0.7 0.1 Jun	0.5 6.1 Jul	0.9 0.1 Aug	1.0 0.1 Sep	1.4 0.2 Oct	1.7 0.3 Nov	1.5 0.3 Dec	13.0 2.5 Annual	40 40 Ye	197 201 197 201

108

21 May 1989 102 108

30 Jul 1993

28 Jun 1991 124

10 Aug 1992 115 122

02 Sep 03 Oct 2002 1971

113 107

26 Mar 02 Apr 1984 2008 1970 2010

139

15 Nov 21 Dec 1982 1973

113

139 39

15 Nov 1982

Maximum wind gust speed (km/h)

Date

137

03 Jan 1981 115

26 Feb 1998

13 Apr 2010

Climate statistics for Australian locations

Page 2 of 2

Statistics	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Ye	ars
Mean daily sunshine (hours)	8.7	8.1	7.5	6.4	4.8	4.0	4.5	5.5	6.2	7.3	7.6	8.4	6.6	11	199 201
Mean daily solar exposure (MJ/m²)	24.7	21.7	17.4	11.8	8.0	6.3	7.1	10.3	13.8	18.4	22.2	24.2	15.5	20	199 201
Mean number of clear days	5.1	5.4	5.5	4.8	3.1	2.9	2.8	2.6	3.0	3.3	3.3	4.1	45.9	39	197 201
Mean number of cloudy days	13.1	10.3	13.6	14.6	17.5	16.9	16.7	15.6	15.6	16.6	15.5	14.8	180.8	39	197 201
Mean daily evaporation (mm)	8.1	7.2	5.9	3.9	2.5	1.9	2.0	2.8	4.2	5.2	6.0	7.4	4.8	12	199 201
Statistics	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Ye	ars
am conditions															
Mean 9am temperature (°C)	18,1	18.0	16.6	14,1	11.3	8.7	7.9	9.1	11.3	13.6	15.0	16.8	13.4	39	197 201
Mean 9am wet-bulb temperature (°C)	14.2	14.5	13.4	11.5	9.6	7.4	8.6	7.3	8.9	10.5	11.7	13.0	10.7	39	19) 201
Mean 9am dew-point temperature (°C)	10.7	11.6	10.5	8.8	7.7	5.9	4.9	5.1	6.1	7.0	8.5	9.3	8.0	39	197 201
Mean 9am relative humidity (%)	65	69	70	72	79	83	82	77	72	66	67	64	72	39	197 201
Mean 9am cloud cover (oktas)	5.2	4.8	4.9	5.1	5.4	5.4	5.2	5.1	5.2	5.4	5.3	5.3	5.2	39	19) 201
Mean 9am wind speed (km/h)	18.5	17.0	16.9	16.6	17.3	18.3	20.3	21.6	22.1	21.8	19.0	18.7	19.0	39	197 201
Statistics	Jan	Feb	Mar	Арг	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual	Ye	ars
3 pm conditions															
Mean 3pm temperature (°C)	24.3	24.8	22.5	19.0	15.6	12.6	12.0	13.3	15.3	17.6	20.2	22.4	18.3	39	197 201
Mean 3pm wet-bulb temperature (*C)	16.4	16.9	15.5	13.3	11.6	9.7	8.9	9.5	10.8	12.2	13.9	15,1	12.8	39	197 201
Mean 3pm dew-point temperature (°C)	9.8	10.4	9.4	7.9	7.5	6.3	5.2	5.1	5.8	6.6	8.0	8.5	7.5	39	197 201
Mean 3pm relative humidity (%)	44	44	47	52	60	67	65	59	56	52	49	45	53	39	19) 201
Mean 3pm cloud cover (oktas)	4.4	4.5	4.8	5.2	5.7	5.7	5.7	5.7	5.6	5.5	5.2	5.0	5.3	39	19) 201
Mean 3pm wind speed (km/h)	22.3	21.2	20.6	19.8	19.7	20.8	22.8	23.9	24.4	23.5	22.4	22.7	22.0	39	197

Product IDCJCM0035 Prepared at Thu 01 Apr 2010 02:00:12 AM EST

Monthly statistics are only included if there are more than 10 years of data. The number of years (provided in the 2nd last column of the table) may differ between elements if the observing program at the site changed. More detailed data for individual sites can be obtained by contacting the Bureau.

Related Links

This page URL: http://www.bom.gov.au/climate/averages/tables/cw_086282_All.shtml Summary statistics and locational map for this site: http://www.bom.gov.au/climate/averages/tables/cw_086282_shtml About climate averages: http://www.bom.gov.au/climate/cdo/about/about.stats.shtml Data file (csv): http://www.bom.gov.au/climate/cdo/about/about.stats.shtml Data file (csv): http://www.bom.gov.au/climate/averages/index.shtml Bureau of Meteorology website. http://www.bom.gov.au/climate/averages/index.shtml Bureau of Meteorology website. http://www.bom.gov.au/climate/averages/index.shtml

Page created: Thu 01 Apr 2010 02:00:12 AM EST

Home | About Us | Learn about Meteorology | Contacts | Search | Site Map | Help | Feedback Weather and Warnings | Climate | Water | Numerical Prediction | About Services | Registered Users

© <u>Copyright</u> Commonwealth of Australia 2010, Bureau of Meteorology (ABN 92 637 533 532) Please note the <u>Copyright Notice</u> and <u>Disclaimer</u> statements relating to the use of the information on this site and our site <u>Privacy</u> and <u>Accessibility</u> statements. Users of these web pages are deemed to have read and accepted the conditions described in the Copyright, Disclaimer, and Privacy statements. Please also note the <u>Acknowledgement</u> notice relating to the use of information on this site. No unsolicited commercial email.